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PERFORMANCE PREDICTIONS for the ARL 

ENHANCED 2.44-m BLAST SIMULATOR 

1.0 INTRODUCTION 

The U.S. Army Research Laboratory's (ARL) 2.44-m blast simulator is a shock tube 

designed to produce high fidelity simulations of ideal nuclear blast waves. Glasstone and Dolan 

(1977) use the term "ideal" to describe a blast wave generated over a flat surface that reflects all 

of the thermal energy and blast that strike it; properties of the blast wave are essentially free of 

mechanical and thermal effects. Some of the examples that Glasstone and Dolan offer as ideal 

surfaces include water, ice, packed snow, moist soil with sparse vegetation, and commercial and 

industrial areas. 

This report describes the calculated performance characteristics and yield in kilotons (kt) of 

the 2.44-m blast simulator. The performance characteristics are then compared to ideal nuclear 

blast waveforms. The flow field performance of this shock tube is predicted using the BRL-Q1D 

code (Opalka & Mark, 1986). It is a quasi-one-dimensional computational fluid dynamics code 

that has proved to be fairly accurate within specific pressure regimes. Using the BRL-Q1D 

hydrocode, along with analysis of the code run results, this report provides approximate upper 

and lower pressure and temperature boundaries for future experimental work. 

2.0 ARL 2.44-m BLAST SIMULATOR 

Glasstone and Dolan cite five main types of burst associated with nuclear blast: (1) air 

burst, (2) high altitude burst, (3) underwater burst, (4) underground burst, and (5) surface burst. 

The blast simulator is designed to simulate air burst, defined by Glasstone and Dolan, as a nuclear 



weapon detonated below 100,000 ft but high enough that the fireball, at its maximum brilliance, 

does not reach the ground. 

The blast simulator was previously referred to as the Ballistic Research Laboratory 

probative tube. The purpose of the probative tube development program was the development of 

a research tool for studying new blast simulation techniques. Since the probative tube was similar 

in many characteristics to the large blast/thermal simulator (LB/TS) constructed by Defense 

Nuclear Agency (DNA) at White Sands Missile Range, New Mexico (Opalka & Pearson, 1989), 

the probative tube was also used in the design of the LB/TS and is considered a 1:6 scale model 

of that facility. 

The blast simulator consists of a 2.44-meter diameter expansion tunnel (open to the 

atmosphere), a 0.91-m diameter driver tube, and a converging nozzle/throat section. Figure 1 is a 

diagram of the facility. Four major subsystems were added during the probative tube 

development program completed in 1992 (Pearson, Schraml & Opalka, 1991). These include a 

cryogenic-based driver gas (nitrogen) supply system, a high pressure driver tube, and a dual 

diaphragm system. Also attached to the system but not yet fully operational is an active 

rarefaction wave eliminator (RWE) system to eliminate expansion waves from the end of the 

shock tube, which would destroy the waveform fidelity in the test section. A thermal radiation 

source (TRS) is being developed that will eventually be installed to simulate the thermal radiation 

effects of a nuclear weapon on a target. 



2 Diaphragms 

Expansion Section 

Note: All dimensions in meters - not to scale 

Figure 1. 2.44-m Blast Simulator Dimensions. 

The test section is located 6.5 diameters from the beginning of the expansion tunnel. Based 

on equipment ratings, the facility should be able to achieve a driver pressure of 12.8 MPa, gauge 

(1,850 psig) with a temperature that can reach 700 K (800 °F) at maximum driver pressure 

conditions. Experimental testing is needed and is currently planned to verify these estimates. 

This facility creates a shock wave by first filling the driver with high temperature, high 

pressure nitrogen gas. The end of the driver tube has a converging nozzle section with two 

diaphragms in the throat. The double diaphragm system is used instead of a single diaphragm 

fitted with explosive charges since explosives may become sensitized when exposed to high 

temperatures. The diaphragms are designed to withstand roughly half of the driver pressure and 

are stocked in different thicknesses for various pressures. The space between the two diaphragms 

is pressurized to maintain about half the pressure in the driver. The diaphragms are ruptured 

when the nitrogen gas between the diaphragms is released, causing the differential pressure on the 

upstream diaphragm to increase until it ruptures. The downstream diaphragm is then exposed to 

the full driver pressure, causing it to rupture. The driver gas flows into the expansion section, led 

by a shock wave. 

The interface between the driver gas and the shocked air in the expansion tunnel is called the 

contact surface. To achieve a waveform that simulates the decaying wave of an actual nuclear 

blast, the density must be similar between the shocked air and expanded driver gas. Glass and 

Hall (1959) state that pressure and velocity are equal across the contact surface, but density and 



temperature are usually different. Based on the equation of state for an ideal gas, it is known that 

a change in temperature directly affects density, which, in turn, affects dynamic pressure. Heating 

of the driver gas to an appropriate temperature causes the densities of the driven and expanded 

driver gas to be similar. The heated gas cools as it expands in the expansion section and, if heated 

properly, will result in density matching across the contact surface. This preheating eliminates an 

increase in density and dynamic pressure that would result if the driver gas had not been heated. 

3.0 METHODOLOGY 

The driver tube estimated capability ranges from about 862 kPa, gauge (125 psig) to 

12.8 Mpa (1,850 psig) with temperatures reaching 700 K (800°F). These estimates are based on 

equipment specifications. Based on this range, 11 initial driver conditions were selected for 

evaluation. The following steps were followed to determine the expected blast simulation 

performance of the facility: 

(a) Initial driver temperature and pressure conditions that produce density matching across 

the contact surface were determined. 

(b) The input file was created. BRL-Q1D was run for the 11 initial driver conditions. BRL- 

Q1D predictions of static overpressure and dynamic pressure were plotted. Curves for 

static overpressure and dynamic impulse were created. 

(c) Equivalent nuclear weapon yields from Q1D predicted peak static overpressure, static 

impulse, and dynamic impulse were determined. 

(d) Ideal waveforms of equivalent overpressure and impulse were generated to compare to 

shock tube waveforms and assess simulation fidelity. 



The following parts of this section explain each step in greater detail. 

3.1 Driver Initial Conditions 

The initial driver conditions consist of a desired temperature and pressure within the driver 

tube. Since pressure was known, it was necessary to calculate an appropriate temperature. This 

was done using a program called PTUBE (Schraml & Pearson, 1995), which was originally 

designed for the LB/TS but will also produce accurate predictions for the 2.44-m blast simulator, 

which is a scale model of the LB/TS. 

PTUBE uses the results of computational fluid dynamics analysis and small scale 

experimentation with a 25.4-cm shock tube to generate empirical relationships between driver gas 

pressure and temperature. A correct combination of these relationships provides a shock wave of 

appropriate amplitude to simulate an ideal shock wave with density matching across the contact 

surface. This program provides an approximation only. 

The PTUBE program requires the user to provide the ambient conditions and the desired 

driver pressure. The program suggests the required driver temperature for approximately 

matching density across the contact surface and the expected incident shock overpressure at the 

test section. 

3.2 BRL-Q1D Code 

The BRL-Q1D code was used to predict static overpressure and dynamic pressure histories 

produced by the 2.44-m blast simulator. This code uses quasi-one-dimensional, adiabatic, 

inviscid, numerical algorithms to solve the Euler equations (Opalka & Mark, 1986). The option 

to use a Beam and Warming implicit finite difference technique in the code was used instead of 

the option to use the MacCormack explicit finite difference technique. The implicit numerical 

scheme is less sensitive to area changes and is more stable than the explicit scheme in this code 



according to Opalka and Mark. During the original development of this code, experimental data 

were used to validate its ability to model transient flow in shock tubes. The grid for these runs 

has a total of 1600 points. Figure 2 illustrates the configuration of the BRL-Q1D model and the 

grid distribution within the model. The code clusters grid points in critical areas by superimposing 

a fine grid over a basic course grid. Only a small part of the expansion section is shown, but the 

grid spacing remains constant from where the grid grows larger in the expansion section to the 

shock tube exit. 

Note: Does not include full exapnsion section 

Figure 2. Grid Distribution. 

BRL-Q1D has proved to be a reliable code but with some limitations. A one-dimensional 

code can only give approximate results of the flow simulation since the actual flow is three 

dimensional. The Q1D code is referred to as a quasi-one-dimensional code because it allows 

limited area changes. Abrupt area changes cause the code to become unstable. The exit of the 

throat section of the 2.44-m blast simulator has a sudden area change as can be seen in Figure 1. 

In the BRL-Q1D model, the driver, converging nozzle and throat section are modeled to 

identically match the actual facility. Setting up the grid configuration to avoid abrupt area 

changes required allowing for an angled, diverging nozzle section to create a more gradual area 

change. This 45° diverging nozzle, as can be seen in Figure 2, was added to the end of the throat 

section, extending to the 2.44-m diameter expansion tunnel. 

The actual facility has a double diaphragm system. For the purpose of running the code, 

though, a single boundary was set up at the location of the upstream diaphragm separating the 

heated, high pressure gas from ambient conditions. This approximation is acceptable since any 



perturbations in the flow caused by a double diaphragm system will have little effect on the 

primary flow at the test section. 

A rarefaction wave is an expansion wave that is caused by the shock front encountering an 

abrupt area change going from the expansion section to the surrounding atmosphere. The 

rarefaction wave travels upstream, in the opposite direction of the flow, in an attempt to bring the 

under-expanded driver gas back to ambient pressure. When the rarefaction wave reaches the test 

section, the static pressure decreases and dynamic pressure increases as fluid particle velocity 

increases. An RWE reduces the area of the exit, which accelerates the flow and reduces the static 

pressure of the blast to ambient. Because there is no pressure difference, no expansion wave is 

created. This effect, of a properly working RWE, simulates an infinitely long expansion section. 

The BRL-Q1D model of the expansion section was made sufficiently long to eliminate the effect 

of a rarefaction wave. 

3.3 Yield Calculations 

Nuclear weapon yield calculations were performed using a program described by Schraml 

and Pearson (1995) called YIELD. The program is based on the Reflect-4 Code (Smiley, 

Ruetenik, and Tomayko, 1982). This code uses Sachs' scaling to fit a tabulated reference blast 

wave based on a 40-kt blast to user data. The program takes user-supplied inputs for peak static 

overpressure, static overpressure impulse, ambient pressure, ambient temperature, and dynamic 

pressure impulse and provides equivalent ideal nuclear weapon yields. Care must be taken in 

selecting peak static overpressure. At mid-level and lower pressures, minor changes in peak static 

overpressure can cause significant differences in calculated yield. Selecting a lower peak static 

overpressure but maintaining the same static overpressure impulse and dynamic pressure impulse 

will cause the yield to be higher since, in effect, it would require a larger nuclear weapon to 

create the same effect at a greater distance. 



3.4 Ideal Waveforms 

The ideal waveforms generated by a program called BLAST (Schraml and Pearson, 1995) 

are used to compare predicted blast wave histories to ideal nuclear blast waveforms. The 

program uses a modified Friedlander equation of the form 

p(tHw*(l-t^PPd)*e<wlwd 

in which p = static overpressure 

t = time 

p^ = amplitude of incident shock 

ppd = positive phase duration of the blast 

ci = decay constant of the blast wave 

The user prescribes the peak static overpressure, yield, ambient pressure and ambient 

temperature. The program calculates the equivalent height of burst of the weapon, equivalent 

ground range to the observation point, and static overpressure and dynamic pressure as a function 

of time. 

4.0 DATA ANALYSIS 

Table 1 is a summary of the results of the 11 Q1D code runs. As stated before, these runs 

were set up to simulate the expected operating range of the 2.44-m blast simulator. Shock 

overpressures and yields are at the test section. 

Calculations are based on an ambient pressure of 101.35 kPa (14.7 psi) and an ambient 

temperature of 288.71 K (60° F). "Shock Overpress. (kPa)" is the peak static overpressure. 



"Yield - Static (kt)" and "Yield - Dynamic (kt)" refer to equivalent nuclear weapon yields, based 

on static overpressure impulse and dynamic pressure impulse, respectively. 

Table 1 

Summary of Results 

Driver Pressure 

(kPa,gauge) 

Driver 

Temp. 

(K) 

Shock 

Overpress. 

(kPa) 

Yield- 

Static 

(kt) 

Yield- 

Dynamic 

(kt) 

862 312.6 21.5 1.11 0.61 

1207 324.8 28.8 1.64 0.86 

1551 337.6 36.5 2.17 1.06 

2068 356.5 46.5 2.95 1.47 

2758 378.7 60.5 4.28 1.87 

3792 406.5 78.5 6.92 2.69 

5171 442.6 107.0 10.29 3.16 

6205 459.8 128.0 12.32 3.29 

8274 494.8 175.0 16.54 4.81 

10342 529.3 215.0 20.16 6.88 

12755 567.0 260.0 28.98 9.79 

4.1 Procedure/Assumptions 

For each of the 11 Q1D code cases, the following data were plotted: 

(a) Static overpressure (kPa). 

(b) Static overpressure impulse (kPa-s). 



(c) Dynamic pressure (kPa). 

(d) Dynamic pressure impulse (kPa-s). 

(e) Ideal waveform derived from static overpressure impulse. 

(f) Ideal waveform derived from dynamic pressure impulse. 

Analysis of these results required making some assumptions in order to interpret them 

consistently. As mentioned earlier, choosing peak static overpressure is important in order to 

achieve consistent results in determining yield as well as shock strength. These assumptions are 

a. The peak static overpressure impulse is determined to be the impulse at the conclusion 

of the first positive phase. Some of the cases at higher pressures do not exhibit a negative phase 

within the time frame of interest. In these cases, the peak static overpressure impulse is 

determined to be the cumulative impulse as of 700 ms. The actual code runs are extended to 

1 second. By terminating the impulse calculation at 700 ms, less than 2% error is introduced in 

the yield calculations. This is judged to be acceptable for this series of runs, since, as time passes, 

the static overpressure is so low as to be considered insignificant in its ability to be destructive. 

b. Since it is known that the BRL-Q1D code overshoots the initial static overpressure 

peak, this value was determined by inspection. The vertical distance between the two highest 

peaks was measured and the peak was estimated to be approximately one third of that distance 

higher than the lower of the two peaks. 

c. The peak dynamic pressure, q, is the kinetic energy per unit volume of air immediately 

behind the shock front. For this report, q is defined as 

q=x/2pu2 

in which p=density, kg/m3 

u=particle velocity, m/s 

10 



4.2 Analysis 

Weapon yields based on static overpressure impulse and dynamic pressure impulse do not 

match the equivalent free field yields in a shock tube (Opalka, 1987). This is because a free field, 

spherical explosion has different static and dynamic impulse relationships than does a simulated 

blast produced in a linear direction inside a shock tube. Therefore, calculations also include yield 

based on dynamic pressure impulse. Both static overpressure and dynamic pressure are 

important. Effects of static overpressure can cause damage because of crushing in the diffraction 

phase of the event, while dynamic pressure effects can include damage by overturning caused by 

drag loading. 

Figure 3 shows the predicted operating curve for yield versus shock overpressure at the 

test section. Based on calculated results, the blast simulator is capable of having yields as high as 

28 kt with expected peak shock overpressures of 260 kPa (37 psig). BRL-Q1D predictions of 

flow in other shock tubes with similar configurations have greatly over-predicted high pressure 

shots (Opalka, 1987). Shock overpressures above 140 kPa (20 psig) will require much higher 

driver overpressures than those predicted by Q1D (Opalka, 1987). It is expected that 172 kPa 

(25 psig) will be the actual maximum static overpressure of the facility's capability. The 

computations also predict that this facility can produce yields based on dynamic pressure as great 

as 9.79 kt. Experimental testing is expected to illustrate a gradual divergence of experimental and 

predicted results. In the past, the expected divergence of experimental and predicted results has 

proved to be attributable to the BRL-Q1D code over-predictions and experimental variations, 

which can cause significant differences at higher pressures. The actual point at which the code 

can no longer adequately predict actual shock tube performance can be determined once 

experimental data are available. 

11 
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Figure 3. Yield Versus Shock Strength. 

Figure 4 shows the predicted operating range of the driver and its relationship to yield. To 

attain the 28.98-kt range, the driver tube must reach overpressures as great as 12.75 MPa 

(1850 psig) at a temperature of 567 K (560° F). This is on the upper end of the gas-handling 

system's capability. 

12 
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Figure 4. Yield Versus Driver Overpressure. 

Figures 5 through 26 are plots of the code run results. These figures start on page 19. 

Each driver condition is represented by two figures. The first figure in each pair compares ideal 

waveforms to predicted static overpressure and dynamic pressure. These ideal waveforms are 

based on weapon yield developed using static overpressure impulse. The second figure in each 

pair compares ideal waveforms, based on weapon yield developed using dynamic pressure impulse 

to calculated static overpressure and dynamic pressure plots. 

For Figure 5, which corresponds to a driver overpressure of 862 kPa (125 psig), shows 

that the static overpressure positive phase duration ends 0.48 second into the event. Flow 

through the throat section of the shock tube is sonic and therefore limits the mass flow rate 

through the nozzle. Since this driver condition has the lowest pressure and therefore the lowest 

13 



mass flow rate, the positive phase duration is the shortest of all the driver conditions. The ideal 

waveform corresponds well with the predicted waveform for static overpressure. This is to be 

expected since the development of an ideal blast waveform is based on the static overpressure and 

dynamic pressure waveforms based on BRL-Q1D static overpressure impulse. Thus, the ideal 

blast wave must have the same impulse as the static overpressure waveform. 

The lower plot of Figure 5 compares dynamic pressure to an ideal waveform for dynamic 

pressure. The ideal waveform is based on yield calculated from static overpressure. As 

mentioned earlier, a blast from a shock tube does not simulate the same relationship between 

static overpressure and dynamic pressure as in an actual free field nuclear event. Dynamic 

pressure from a real nuclear event has a longer positive phase than static overpressure (Glasstone 

& Dolan, 1977). In general, this effect is only a few percent at lower overpressures but can be 

more than twice as long at extremely high overpressures. The plot shows that the ideal waveform 

does not correspond with the dynamic pressure record. The area under the curve for dynamic 

pressure is obviously less than for the ideal waveform. 

Figure 6 plots are at the same driver condition as in Figure 5 and they have the same static 

overpressure and dynamic pressure histories generated by BRL-Q1D. The ideal waveforms on 

this page are developed from weapon yield based on dynamic pressure impulse, peak static 

overpressure, ambient pressure, and ambient temperature. The static overpressure is higher than 

the ideal waveform and is not a good fit. However, the plot comparing dynamic pressure to the 

ideal waveform is a good fit since the waveform is based on dynamic impulse. If there were a 

significant problem with density matching of the contact surface, the dynamic pressure records 

would not correspond well with ideal waveforms. 

All the figures will have the same results when static and dynamic plots are compared with 

ideal waveforms. That is, static overpressure plots will correspond well with ideal waveforms that 

are based on weapon yield calculated from static overpressure impulse; however, the dynamic 

counterpart will not match the ideal waveform since the blast wave from the shock tube cannot 

14 



simulate a true nuclear event in both static overpressure and dynamic pressure in only one shot. 

The same situation exists when the plots are compared to ideal waveforms, based on weapon yield 

from dynamic pressure impulse, except the reverse will be true. The dynamic pressure plots will 

match with the ideal waveforms, while the static overpressure plots will not correspond well. 

All the figures show the stair-step pattern characteristic of blast from a single driver shock 

tube. These steps are the effects of reflections of the expansion wave from the upstream end of 

the driver tube and the effect of having a converging section. A target would not be significantly 

influenced by this stair-step effect. 

From Figure 15 until Figure 26, the highest test condition, the positive pressure phase for 

static overpressure has extended past the time period of interest. This is because of the large 

amount of mass emptying from the driver tube at driver conditions of 3.79 MPa (550 psig) and 

above. The plots were not extended in time because as the static overpressure approaches 

zero kPa, there is little potential in the remaining history to inflict damage to a target. In a real 

nuclear event, the dynamic positive phase would be longer than the static overpressure positive 

phase and the time period of interest would be longer. 

Figures 19 to 26,175 kPa to 260 kPa (25 to 37 psig) shock overpressures, show an 

interesting effect that is not found in a nuclear event. Opalka (1987) has shown that with a similar 

shock tube configuration, recompression shocks are generated within the QID code for shock 

overpressures of 170 kPa and above. A recompression shock forms in the nozzle and breaks free 

when there is a large enough pressure ratio, usually above 40 (Opalka, 1991). For an interval of 

0.23 s to 0.34 s, depending on the driver conditions and shock strength, a recompression shock 

occurs and its effects can be seen at the test section. For Figures 19 and 20, the effects of the 

recompression shock can be seen about 0.23 s into the event. The recompression shock is 

indicated by a sudden spike in static overpressure with a small spike in dynamic pressure. Some 

previous research (Opalka, 1987) indicates that although the recompression shock exists, Q1D 

over-predicts the strength of it as well as the location. For this particular facility, the 

15 



recompression shock occurs at the end of the period of interest and has minimal effect on the 

target but may have a minor effect on the calculation of yield since impulse is affected. It is 

anticipated that experimental testing will show that the very high shock strengths will not be 

attainable; therefore, recompression shocks would not be an issue. 

5.0 CONCLUSIONS 

These results provide an indication of the wide range of shock overpressures and 

equivalent weapon yields that the 2.44-meter blast simulator is capable of producing. There are 

two important points to be stressed about these results. One is that the predictions are based on a 

one-dimensional code. Although this code can approximate the flow, it is not as reliable in 

predicting shock tube phenomenology as a three-dimensional code. The other point is the need 

for experimental work to confirm predictions or provide more accurate results, especially at 

higher driver pressures. The operating curves presented are only an estimate until the facility is 

characterized. 

A summary of the results of this report is as follows: 

1. The enhanced 2.44-m blast simulator does not produce the same relationship between 

static and dynamic waveforms as is found in the blast waves from actual nuclear detonations. 

This inability to reproduce the proper relationship means that the simulated weapon yields 

calculated, based on static and dynamic impulse, differ in the blast simulator. If there were an 

interest in seeing the effects of diffraction loading and drag loading on a target for one specific 

weapon, two tests at different driver pressures would be necessary. 

2. Predicted shock strengths range from 21.5 kPa (3.12 psig) to 260 kPa (37.71 psig), 

though the high end of the range is optimistic. 
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3. Yield based on static overpressure and impulse ranges from 1.11 kt to 28.98 kt. Yield 

based on static overpressure and dynamic impulse ranges from 0.61 kt to 9.79 kt.   Since 

predicted shock strengths for higher driver pressures and temperatures are optimistic, actual yields 

may differ significantly. 

4. The predicted recompression shock that occurs at the high temperatures and pressures 

is over-predicted by a 1-D code and either does not exist or is much weaker than the code 

indicates. It should have minimal or no effect on dynamic and static pressures. 

5. Accurately interpreting peak static overpressure from Q1D code runs is critical for 

properly determining kiloton yields, especially at low to mid shock strengths. 

At a minimum, the rarefaction wave eliminator must be operational in order to achieve a 

high fidelity nuclear blast simulation. Without it, the rarefaction wave from the end of the 

expansion section will destroy the simulation before the time period of interest has ended. Also, 

the thermal radiation source (TRS) is important to simulate a nuclear event. Without it, the face 

of the target may not be properly impacted since the TRS' high temperature degrades the surface 

of a target. 

The data and predictions presented here are based on a one-dimensional code. Ensuing 

work with a two- or three- dimensional code would improve the accuracy of computational 

results and should provide a more realistic numerical flow simulation. Numerical flow simulations 

are important since not all flow characteristics can be experimentally measured. 

Experimental work is also necessary to find the true upper and lower mechanical limits of 

the driver fill system. Specifically, the maximum combined temperature and pressure conditions 

are not known. Also, the double diaphragm system has not been proved at high pressures and 

temperatures and may be a limiting factor. 
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This work should only be considered an attempt to predict the capabilities of this facility. 

It can also be used as an aid in setting up a test plan for experimental characterization. During 

and after experimental testing, a comparison should be made to validate the testing and to provide 

verification of the applicability of BRL-Q1D code to this facility. 
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Figure 22. 8.27 MPa (1200 psig) Driver Overpressure - Ideal Waveform Based on Dynamic 
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Figure 23. 10.34 MPa (1500 psig) Driver Overpressure - Ideal Waveform Based on Static 
Overpressure Impulse. 
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Figure 24. 10.34 MPa (1500 psig) Driver Overpressure - Ideal Waveform Based on Dynamic 
Pressure Impulse. 
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Figure 25. 12.75 MPa (1850 psig) Driver Overpressure - Ideal Waveform Based on Static 
Overpressure Impulse. 
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Q1D Peak Impulse = 28.98 kPa-s 
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Figure 26. 12.75 MPa (1850 psig) Driver Overpressure - Ideal Waveform Based on Dynamic 
Pressure Impulse. 
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